

Modelos de comportamiento y daño aplicables en la fragilización por hidrógeno de los aceros

Lucas Castro García

castrolucas@uniovi.es

Comportamiento en servicio de componentes de acero en contacto con hidrógeno a presión (PID2021-1247680B-C22)

Parque Tecnológico de Gijón 23 de Mayo del 2024

Simulación Numérica, Modelización, Caracterización Mecánica y Optimización Microestructural de Componentes Industriales

www.simumecamat.es

Contenido

 Modelización numérica de la difusión de hidrógeno
 Modelización de la fragilización por hidrógeno
 Modelización Phase Field-(Modelo de daño)
 Caso práctico de aplicación: Elementos estructurales soldados destinados al transporte y alamacenaje de hidrógeno a presión

Entrada de Hidrógeno

$$C = S \sqrt{p_{H_2}}$$

Entrada de Hidrógeno

$$C = S \sqrt{p_{H_2}}$$

Difusión de hidrógeno

$$\frac{\partial C}{\partial t} - D\nabla^2 C + \nabla \left(D \frac{\overline{V}_H}{RT} C \nabla \sigma_H \right) = 0$$

Entrada de Hidrógeno

$$C = S \sqrt{p_{H_2}}$$

Difusión de hidrógeno $\frac{\partial C}{\partial t} - D\nabla^2 C + \nabla \left(D \frac{\overline{V}_H}{RT} C \nabla \sigma_H \right) = 0$

 (H_2) p_{H_2} (H_2) Zona del proceso H_2 (H_2) H_2 H_2 (H_2) de fractura $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}$ (H_2) $\begin{array}{c} \begin{array}{c} - \\ H_2 \end{array} \end{array} \begin{array}{c} H_2 \end{array} \begin{array}{c} H_2 \end{array} \end{array}$ (H_2) (H_2) (H_2) (H_2) (H_2) (H_2) $\uparrow \uparrow \nabla \sigma_H$ $(H_2)(H_2)$ (H_2) (H_2) (H_2) H_2 $(H_2)(H_2)(H_2)(H_2)(H_2)$ H_2 H_2 H_2 H_2 H_2 H_2 $H_2 H_2 H_2$ (H_2) (H_2) (H_2) (H_2) (H_2) (H_2) (H_2) Probeta CT p_{H_2} H_2 Juntas de grano Carburos

Entrada de Hidrógeno

$$C = S \sqrt{p_{H_2}}$$

Difusión de hidrógeno $\frac{\partial C}{\partial t} - D\nabla^2 C + \nabla \left(D \frac{\overline{V}_H}{RT} C \nabla \sigma_H \right) = 0$

Entrada de Hidrógeno

$$C = S \sqrt{p_{H_2}}$$

Difusión de hidrógeno $\frac{\partial C}{\partial t} - D\nabla^2 C + \nabla \left(D \frac{\overline{V}_H}{RT} C \nabla \sigma_H \right) = 0$

 p_{H_2}

 (H_2)

 H_2 H_2 H_2

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}$

 H_2

 (H_2)

 (H_2)

 (H_2)

 H_2

 H_2

 p_{H_2}

 H_2

Entrada de Hidrógeno $C = S \sqrt{p_{H_2}}$ (H_2) H_2 H_2 Zona del proceso de fractura Difusión de hidrógeno (H_2) (H_2) $\frac{D}{D_e}\frac{\partial C}{\partial t} - D\nabla^2 C + \nabla \left(D\frac{\overline{V}_H}{RT}C\nabla\sigma_H\right)$ (H_2) (H_2) (H_2) $\uparrow \uparrow \nabla \sigma_H$ (H_2) $+\left(\sum_{i}\alpha^{(i)}\theta_{T}^{(i)}\frac{\partial N_{T}^{(i)}}{\partial \rho}\right)\frac{\partial \rho}{\partial t}=0$ (H_2) (H_2) (H_2) $(H_2)(H_2)(H_2)(H_2)(H_2)$ H_2 H_2 H_2 H_2 (H_2) (H_2) $H_2 H_2 H_2$ (H_2) (H_2) (H_2) (H_2) Probeta CT $D_e = D \frac{C_L}{C_L + \sum_i C_T^{(i)} \left(1 - \theta_T^{(i)}\right)}$ H_2 H_2 H_2 Carburos 🔇 Juntas de grano Dislocaciones

Modelización numérica de la fragilización por hidrógeno

Modelización Phase Field

Técnica Phase Field

 $\frac{d\pi}{dA} = \frac{d\Psi(\varepsilon)}{dA} + \frac{dW_c}{dA} = 0, \ G_c = \frac{dW_c}{dA} \quad (Griffith, 1920)$

Modelización Phase Field

Técnica Phase Field

 $\frac{d\pi}{dA} = \frac{d\Psi(\varepsilon)}{dA} + \frac{dW_c}{dA} = 0, \ G_c = \frac{dW_c}{dA} \quad (Griffith, 1920)$ $G_c(C)\left(\frac{\phi}{l_c} - l_c\nabla^2\phi\right) - 2(1-\phi)H = 0$

Modelización Phase Field

Técnica Phase Field

Propagación de grieta

 $\frac{d\pi}{dA} = \frac{d\Psi(\varepsilon)}{dA} + \frac{dW_c}{dA} = 0, \ G_c = \frac{dW_c}{dA} \quad (Griffith, 1920)$ $G_c(C) \left(\frac{\phi}{l_c} - l_c \nabla^2 \phi\right) - 2(1 - \phi)H = 0$

Modelo multifísico Phase Field

$$\nabla (1 - \phi)^2 \widehat{\boldsymbol{\sigma}} - \boldsymbol{b} = 0$$

$$G_c(C) \left(\frac{\phi}{l_c} - l_c \nabla^2 \phi \right) - 2(1 - \phi)H = 0$$

$$\frac{D}{D_e} \frac{\partial C}{\partial t} = D \nabla^2 C - \nabla \left(\frac{D \overline{V}_H}{RT} C \nabla \sigma_H \right)$$

$$G_c(C) = g(C) G_c(0)$$

Caso práctico de aplicación

Análisis del comportamiento a fractura de elementos estructurales soldados destinados al transporte y almacenaje de hidrógeno a presión

Metodología

Modelo mecánico

Modelo térmico

Ensayos Experimentales

Ensayos de tracción

Inputs Modelización numérica del proceso de fractura

EUROTEST-200 00	

Inputs del Modelo Virtual

	Property	Base Metal	HAZ	Weld Metal
٢	E(MPa)	190480	202010	180300
4	σ_{ys} (MPa)	570	660	688
L	n	0.1	0.08	0.07
	$G_c(N/mm)$	90	50	60
	$G_c(\mathcal{C})$	$g(\mathcal{C})=0.0$	068 + 0.931 exp	$v(-9C^{0.8})$
	$D_H (mm^2/s)$	4.18e-5	3.42e-5	2.71e-4

Tabla 1. Propiedades consideradas en las simulaciones.

Traps	$ W_B (kJ/mol)$	N_T (sites/ m^3)
Junas de grano	24.7	5.06e25
Dislocaciones	35.2	4.93e23
Carburos	21.4	3.61e23

Inputs del Modelo Virtual

SimuMecaMat

Research Group

Property	Base Metal	HAZ	Weld Metal
E(MPa)	190480	202010	180300
σ _{ys} (MPa)	570	660	688
n	0.1	0.08	0.07
$\int G_c (N/mm)$	90	50	60
$G_c(C)$	$g(\mathcal{C})=0.$	068 + 0.931 <i>ex</i> 7	$v(-9C^{0.8})$
$D_H (mm^2/s)$	4.18e-5	3.42e-5	2.71e-4

Tabla 1. Propiedades consideradas en las simulaciones.

Traps	$ W_B (kJ/mol)$	N_T (sites/ m^3)
Junas de grano	24.7	5.06e25
Dislocaciones	35.2	4.93e23
Carburos	21.4	3.61e23

Inputs del Modelo Virtual

SimuMecaMat

Research Group

Pro	operty	Base Metal	HAZ	Weld Metal
E(I	MPa)	190480	202010	180300
σ_{ys}	(MPa)	570	660	688
	n	0.1	0.08	0.07
G_c (N	I/mm)	90	50	60
G	_c (C)	$g(\mathcal{C})=0$.068 + 0.931 <i>ex</i> 7	$v(-9C^{0.8})$
D_H (n	$nm^2/s)$	4.18e-5	3.42e-5	2.71e-4

Tabla 1. Propiedades consideradas en las simulaciones.

Traps	$ W_B (kJ/mol)$	N_T (sites/ m^3)
Junas de grano	24.7	5.06e25
Dislocaciones	35.2	4.93e23
Carburos	21.4	3.61e23

Inputs del Modelo Virtual

SimuMecaMat

Research Group

	Property	Base Metal	HAZ	Weld Metal
	E(MPa)	190480	202010	180300
-	σ_{ys} (MPa)	570	660	688
-	n	0.1	0.08	0.07
	$G_c(N/mm)$	90	50	60
	$G_c(C)$	$g(\mathcal{C})=0.$	068 + 0.931 exp	$v(-9C^{0.8})$
~	$D_H (mm^2/s)$	4.18e-5	3.42e-5	2.71e-4

Tabla 1. Propiedades consideradas en las simulaciones.

Traps	$ W_B (kJ/mol)$	N_T (sites/ m^3)
Junas de grano	24.7	5.06e25
Dislocaciones	35.2	4.93e23
Carburos	21.4	3.61e23

Ensayos Experimentales

- Ensayos de tracción
- Ensayos de tenacidad
- Ensayos de permeación
- Analizador de H_2 (TDS)

Inputs del Modelo Virtual

Property	Base Metal	HAZ	Weld Metal
E(MPa)	190480	202010	180300
σ_{ys} (MPa)	570	660	688
n	0.1	0.08	0.07
$G_c(N/mm)$	90	50	60
$G_c(\mathcal{C})$	$g(\mathcal{C})=0.$	068 + 0.931 exp	$p(-9C^{0.8})$
$D_H (mm^2/s)$	4.18e-5	3.42e-5	2.71e-4

Tabla 1. Propiedades consideradas en las simulaciones.

	Traps	$ W_B (kJ/mol)$	N_T (sites/ m^3)
{-	Junas de grano	24.7	5.06e25
	Dislocaciones	35.2	4.93e23
	Carburos	21.4	3.61e23

Fase 3

SimuMecaMat

Research Group

Conclusión

"Mediante métodos computacionales y utilizando ensayos experimentales somos capaces de predecir el comportamiento a fractura de componentes reales sometidos a sus condiciones de servicio"

¡¡¡Muchas gracias por su atención!!!

Lucas Castro García

castrolucas@uniovi.es

Comportamiento en servicio de componentes de acero en contacto con hidrógeno a presión (PID2021-1247680B-C22)

Parque Tecnológico de Gijón 23 de Mayo del 2024

Simulación Numérica, Modelización, Caracterización Mecánica y Optimización Microestructural de Componentes Industriales

www.simumecamat.es